How (and why) Datadog is moving from
cloud-managed to self-managed
Postgres

Nick Canzoneri

pgconf.nyc
2025-09-30

&

DATADOG

Agenda

01

How Datadog uses and has hosted Postgres historically

02

Pros and cons of cloud-managed Postgres

03

How Datadog is hosting Postgres

04

Migrating a datacenter off of cloud-managed Postgres

05

Pros and cons of self-managed Postgres

06

What will our platform look like in the future?

¥ batADOG

How Datadog uses Postgres

e What kind of data does Datadog store? Lots.
o A small percentage of bytes are in Postgres, but those bytes are still important!

¥ batADOG

How Datadog uses Postgres

Metrics timeseries data - not in Postgres

Introducing Monocle: a high-performance timeseries storage

engine

Monocle’s internal components

hl

al

MONOCOLE

}

There are multiple

instances of
Monocle

CACHE

I

MEMTABLE ’ ‘ INDEX

! f

>

LOCAL DISK

Lo FILE E Compaction

process

occurs
L1 FILE

INDEX
CACHE

AGGREGATION

¥ batADOG

How Datadog uses Postgres

e Logs/ events storage - not in Postgres

CCCCCC
EEEEEEEEEEE

Introducing Husky, Datadog's
third-generation event store .

¥ batADOG

How Datadog uses Postgres

e Specialized tools for specialized jobs

real-time
timeseries
database
purpose-built in
Rust for high
throughput and low
latency

¥ batADOG

How Datadog uses Postgres

e Specialized tools for specialized jobs

real-time
timeseries columnar store optimized
database for streaming ingestion
purpose-built in and hybrid analytical and
Rust for high search queries
throughput and low
latency

¥ batADOG

How Datadog uses Postgres

e Specialized tools for specialized jobs

real-time
timeseries columnar store optimized
database for streaming ingestion
purpose-built in and hybrid analytical and
Rust for high search queries
throughput and low
latency

' | have some data to store in a table...

Y

¥ batADOG

How Datadog uses Postgres

=
..') | have some data to store in a table...

users dashboards monitors
Temporal backend vectors .
incidents
hosts notebooks internal control planes

¥ batADOG

How Datadog has hosted Postgres

UST

e Chef-configured EC2 instances for everything, including Postgres (RDS for Postgres didn't exist!)

¥ batADOG

How Datadog has hosted Postgres

UST

e Chef-configured EC2 instances for everything, including Postgres

EU1, US3, US5

e Using new-to-Datadog cloud providers GCP and Azure
e Not using Chef to configure VMs, using Kubernetes
e Use the cloud-managed services in order to run Postgres, GCP CloudSQL and Azure Single Server

¥ patADOG

How Datadog has hosted Postgres

UST

e Chef-configured EC2 instances for everythingtreluding Postgres
e Using Kubernetes for almost all workloads

EU1, US3, US5

e Using new-to-Datadog cloud providers GCP and Azure
e Not using Chef to configure VMs, using Kubernetes
e Use the cloud-managed services in order to run Postgres, GCP CloudSQL and Azure Single Server

¥ patADOG

How Datadog has hosted Postgres

UST
ot confiaured EO] : hireiclidingF

e Using Kubernetes for almost all workloads
e Movedto RDS in 2022

EU1, US3, US5

e Using new-to-Datadog cloud providers GCP and Azure
e Not using Chef to configure VMs, using Kubernetes
e Use the cloud-managed services in order to run Postgres, GCP CloudSQL and Azure Single Server

¥ patADOG

How Datadog has hosted Postgres

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time
o All these managed services means we didn't need any database team, right?

¥ batADOG

How Datadog has hosted Postgres

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time
o All these managed services means we didn't need any database team, right?

WRONG

¥ batADOG

Pros and cons of cloud-managed

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time

CON - learning ALL of the clouds - example: Storage Autoscaling

¥ batADOG

Pros and cons of cloud-managed

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time

CON - learning ALL of the clouds - example: Storage Autoscaling

(O Note

Azure Database for PostgreSQL only supports the storage autogrow feature on storage type
Premium SSD.

Storage always doubles in size for premium disk SSD, and that doubles the storage cost.

Only premium SSD V2 supports more granular disk size increase.

¥ batADOG

Pros and cons of cloud-managed

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time

CON - learning ALL of the clouds - example: Storage Autoscaling

- Enable automatic storage increases

O Note If you enable this setting, Cloud SQL checks your available storage every 30 seconds. If the available storage falls

below a threshold size, Cloud SQL automatically adds additional storage capacity. If the available storage
repeatedly falls below the threshold size, Cloud SQL continues to add storage until it reaches the maximum of 64
TB.

Azure Dat

Premium
Storage always doubles in size for premium disk SSD, and that doubles the storage cost.

Only premium SSD V2 supports more granular disk size increase.

¥ batADOG

Pros and cons of cloud-managed

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time

CON - learning ALL of the clouds - example: Storage Autoscaling

With storage autoscaling enabled, when Amazon RDS detects that you are running out of free database

- Enable autom:) _ T)
space it automatically scales up your storage. Amazon RDS starts a storage modification for an autoscaling-

® Note If you en enabled DB instance when these factors apply:

below a1 . .
Azure Dat. » Free available space is less than or equal to 10 percent of the allocated storage.

repeated . , :
Premium ! Tl: » The low-storage condition lasts at least five minutes.

' » At least six hours have passed since the last storage modification, or storage optimization has completed

Storage always doubles in < on the instance, whichever is longer.
Only premium SSD V2 supports more granular disk size increase.

¥ batADOG

Pros and cons of cloud-managed

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time

CON - Cloud provider APIs and concepts all vary greatly - Automation needs to be written 3 times

¥ batADOG

Pros and cons of cloud-managed

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time

CON - When you need consistency, like support for new extensions like pgvector, across all the
providers

¥ batADOG

Pros and cons of cloud-managed

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time

PRO - the patching, maintenance, and backups are generally excellent

¥ batADOG

Pros and cons of cloud-managed

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time

PRO - Availability/reliability is generally very good

¥ batADOG

Pros and cons of cloud-managed

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time

NEUTRAL - Support - generally responsive and helpful, but most of the time only needed to contact
when something wrong inside the black box

¥ batADOG

Pros and cons of cloud-managed

e Making use of AWS RDS, GCP CloudSQL, and Azure Single Server all at the same time

You get the foibles of ALL the providers, but the only get to take advantage of the benefits if all of the
providers implement it

¥ batADOG

How Datadog is hosting Postgres

e Multi cloud-managed databases wasn't sustainable to support our growth
e We can run it ourselves, on Kubernetes!

¥ patADOG 25

How Datadog is hosting Postgres

Why Postgres on Kubernetes?

e Control of our own destiny
e Uniform stack - database works the same everywhere (even if we miss
out on the best)

Reasons not to run Postgres on Kubernetes?

e Cost (without re-architecting databases) is not cheaper
e Increased complexity

¥ patADOG

How Datadog is hosting Postgres

What does our Postgres on Kubernetes set up look like?

Open source components:

e Postgres
e Patroni
e Walg
e Just a helm chart, not an operator
o Higher level automation is achieved through Temporal
workflows

¥ patADOG

How Datadog is hosting Postgres

Start with a Kubernetes pod

ks eoo(
- postgres
- Patroni
- WQl-g arcL\iVing
_ Y,

¥ batADOG

How Datadog is hosting Postgres

Every pod gets a PVC

e Default to remote storage

o Scale compute independently

o Easyresizing

o attach/detach when replacing hosts
e Local NVME instances when needed

o HighI/0O use cases

o Cheaper at the extremes

ks (aoal

f

- postgres
- Patroni

- WQl-g o«rcl«?ving

remote or
local storage

k8s pve

¥ batADOG

How Datadog is hosting Postgres

Need high-availability, so we add 2 more pods

k8s statefulset

-

\—

/

S(/V\C

‘ Postgres-’l l

leader

[Postgres-Oj

N

GSVV\C

™

[Postgres-:lj

J

¥ batADOG

How Datadog is hosting Postgres

Patroni uses ZooKeeper for leader election and configuration

k8s statefulset

a)
leader
[postgres-OJ ---------------------- >
/ N
syne aspne | __---T Z| ZooKeeper
DL
____________ >
postgres-1 e ™ postgres-2 [-4~ "~ -
_ J

¥ batADOG

How Datadog is hosting Postgres

A simple envoy proxy deployment will redirect traffic to the current

Postgres leader using Patroni apis

k8s deployment

-

-
envoy I
r
envoy]
-

(
eV\VOV
.

‘\

J

k8s statefulset

-

-

leader

/[Postgres-Oj

/

SVV\C

| postgres-1 l

AN

QS(/V\C

™

[Pos‘tgres-:lj

~

J

¥ batADOG

How Datadog is hosting Postgres

k8s statefulset

Optionally, we can also set up " A

dedicated read replica pools

[® ®
3 3 3
< < <
0))
~< ~ ~

for high traffic clusters

k8s Jeeloyment

AR
< < <
0 0 o
~< ~ ~<
2.
4

v
=]
—

J

k8s statefulset

¥ batADOG

Migrating a datacenter off of cloud-managed

We can run Postgres on Kubernetes, but we have a large existing footprint of
databases in each datacenter

How do we prioritize what to migrate to Postgres on Kubernetes?

¥ patADOG

Migrating a datacenter off of cloud-managed

:azurechaos:

¥ batADOG

Migrating a datacenter off of cloud-managed

:azurechaos:
(there is no :awschaos: or :gcpchaos:)

A

¥ batADOG

Migrating a datacenter off of cloud-managed

Postgres limitations for Azure Single Server (which is now “retired” <.)
e Severe limitations on scaling and reliability due to a limit of 5 replicas

¥ patADOG

Migrating a datacenter off of cloud-managed

How we use replica pools

Joy«eb -backend
Pt‘ MQ{V l ‘
[delancie] alerting sves

de,lomc?e, re_plica pool extract f‘ephca Pool aleﬂt?ng re_pl?ca Pool

¥ batADOG

https://excalidraw.com/#json=Dpj5w4wMQbPlYjQVgPBZ0,FDYd_ERUHRQz8lFi4N7JkQ

Migrating a datacenter off of cloud-managed

5 replica limit in Azure Single Server

\
doyweb-laackend
primou‘y
[delancie J‘ @eﬂting SVCSJ

delanci l
glancie feplica aler‘ting replica

¥ batADOG

https://excalidraw.com/#json=U6BLRZ6lfqzdSWrDVcjmo,IWPPJ_91oqBMacT-NZCH8g

Migrating a datacenter off of cloud-managed

Host in username to connect - Very hard to do traffic shifting

d03@primary [N]
JO:.‘,@PQPI;QO\-" [replica-1 j
403@f‘ephca\-2 [replica-2 J

¥ batADOG

https://excalidraw.com/#json=7I1XZv8OHAGBOnu0TEqYi,lyLgJ0s9guSJbKbEdn2iuA

Migrating a datacenter off of cloud-managed

WARN May 29, 6:32:36 pm 2 months ago Actions ¥ & X

[Active] Planned Maintenance Notification for Scheduled Maintenance to Azure
Database for PostgreSQL

Overview Event Attributes
SOURCE SERVICE
AN
azure service health @ azure_database_for_postgresq|
Message Show raw message
Description:

This notification is for upcoming planned maintenance to your Azure Database for PostgreSQL

instance(s) in West US 2. This is scheduled to occur between 00:00 UTC on 04 Jun 2024 (17:00 Pacific

Standard Time on 03 Jun 2024) and 15:00 UTC on 04 Jun 2024 (08:00 Pacific Standard Time on 04 Jun

2024). During planned maintenance on your Azure Database for PostgreSQL instance(s), there can be

database server restarts or failovers, which might lead to brief (60-120 seconds) unavailability of the

database servers for end users. The entire planned maintenance event including each server restarts is

carefully monitored by the engineering team. The server failovers time is dependent on database

recovery time, which can cause the database to come online in minutes to hours if you have high

transactional activity on the server at the time of failover. To avoid longer unavailability time, it is B DATADOG
recommended to keep transactional workload light and defer long-running transactions like create index

https://app.datadoghq.com/event/explorer?query=team%3A%28adp-infra%20OR%20orgstore%20OR%20orgstore-engine%29&cols=&event=AgAAAY_Ge9egrjRPNwAAAAAAAAAYAAAAAEFZX0dmeWRJQUFCSVJ0dF9kcEdRcmxRSQAAACQAAAAAMDE4ZmM2ODctMzFjMy00NWZiLTliNDctM2UxZDM1YjgyYTVj&messageDisplay=expanded-lg&options=&refresh_mode=sliding&sort=DESC&view=spans&from_ts=1721873473094&start=1716850436000&end=1717023236000&to_ts=1721874373094&live=true

Migrating a datacenter off of cloud-managed

A Gateway with strict limits that we have no control over

20 connections/sec max

7

|

|

wv
- Application

PostgreSQL
Client

Azure Storage

Three synchronous copies of data for reliability

¥ batADOG

https://learn.microsoft.com/en-us/azure/postgresql/single-server/overview-single-server

Migrating a datacenter off of cloud-managed

Single point of failure DB replicas
+

Mass restart events
+

Strict connection limits

Lots of incidents :(

¥ patADOG

Replicas Unleashed

How do we begin to solve the problem?

¥ batADOG

{/ HAPFOXV \I Replica Pkysnca[
. health ; 0%, 15< Ganiral! repl-qo«‘t.on
Reads 'ckecks direct | /
| | all traffic : \T‘\
' to heal‘thy | ? . Physical
poo[me_w\laers, PTIS'?:[Replma r‘e,p[lu/cscx‘tlon
&on _Pt.ll_urel 5 sy "P&K General 2" J

\\./} client serv.ces

QO

Reads

Replicas Unleashed

Azure Smgle Server)
Cluster

7

Postgre_s on K¥s
Clus‘ter

(Gyenero\l Pool

-

Rep‘ico\
'PGK General 1

Loi,lcml)
7 Peplncatnon = ; '
il / Pk
Ph‘manl P hy&cal Pﬁmart/
ﬂ rePIIQQtIOV\
(Alej“ting Pool Physlcal S % \
Pepl-codhon _
- PhYSICGI
Replu:a\ "CPIIC&'tlon
PG?K Ale{"tmﬂ 1
—
'/ HAP”’"‘/ \I \ RCPIICQ
| health ; 0% "ss Ale,-otmg
I CheCks O('Pec-t ! \
| all traffic : i
| to healthy |
I, pool membefs: 7
s JUP6K Alerting 2" 7

¥ batADOG

Replicas Unleashed

Azure S?v\gle Server
Cluster

\
Pos‘tgres on K¥s

Cluster

Képe_ne_roxl Pool

\

’/ ’HAProxy \I R epl? i Plr\f/siccf‘l
= Mo Wt
eads [l checks direct
| all traffic !
I Yo heal‘tht/ | 7 ' Physical
: pool members " PT/&:?I Replica re,phco:tion
S ailure) "P6K Gereral " N\
2
//”"'\\
/ﬂ.\\\ \\j (2
{ J ' /) Uizl
N1 % oglca
_ Client services Writes rephcoction =
V)
(,},\\ L) SQngle Server P&K
Prima Phusical Prima
) ry ysic ry
\\., / 1 LN s 1

¥ patADOG 7

Replicas Unleashed

Benefits

Reads

\\./} client serv.ces

QO

Reads

Azure Smgle Server

N

7

Postgre_s on K¥s

Cluster Cluster
(G;enero\l Pool \
Rep‘ico\
GK General 1"
{/ HAPFOXV \I Replica Pkysnca[
. health : K vl repl-qat.on
'ckecks direct | ;
| zA“ traffic :
' to hea|‘thy I ? ; Physlcal
poo[mew\l:ers, Pl'it/su?to\[Replma r‘e,p[uca‘tlon
&on _Pt.ll_ur;e_l g IEpa o) "P&K General 2" J

Loi,lcml)
7 Peplncatnon = ; '
il / Pk
Ph‘manl P hy&cal Pﬁmart/
ﬂ rePIIQQtIOV\
(Alej“ting Pool Physlcal S % \
Pepl-codhon _
- PhYSICGI
Replu:a\ "CPIIC&'tlon
PG?K Ale{"tmﬂ 1
—
'/ HAP”’"‘/ \I \ RCPIICQ
| health ; 0% "ss Ale,-otmg
I CheCks O('Pec-t ! \
| all traffic : i
| to healthy |
I, pool membefs: 7
s JUP6K Alerting 2" 7

¥ batADOG

Replicas Unleashed

New failure point:
e Migrations
e Large write txns

@

Reads

)
\\ /’ S
72)

~

Client services

@ ©

Reads

Azure S‘V‘f[le Server
Cluster

P Ostgf‘es on K¥s
Cluster

(Gwenero‘l Pool

f/ HAProxy
| health :
| checks direct |
| all traffic :
| to healthy |
: poo[members !
_on failure

Pkysical

Replica

Repliaa

'P6K General 1"
> Pl hys?ca[
) N&Phca‘tion

Physical

f‘ephco. ion

|

Writes

Single Server
Primom./

|

|
Phtfsico\l
rep lication

| health :
:Clﬂecks direct |
| all traffic :
| to healthy |

I, pool members :
\&z\ Podlure Y

WPy

\ Replica
0% 'SS Alerting’

10%

\=

Re—PhC"‘ ~ e,p[ica‘tiom
‘PGK General 2"

Rephc replication
'PGK Alerting 1"

Replica

'PGK Alerting 2"

¥ paTADOG

A recipe for zero* downtime cutovers

¥ batADOG

A recipe for zero* downtime cutovers

*: This can mean very different things to different people...

e Zero connections broken? That's good, but tight statement timeouts don't
tolerate long pauses

e Zero errors return to users? That's great! Application code needs to handle
that everywhere

e Zero SLOs broken - keep impact within “typical” maintenance operations,
like restarts, <30sec. 100% uptime is not a standard | want to be oncall
for...

¥ pATADOG

A recipe for zero* downtime cutovers

What you need?

e Ahead of time: A proxy/piece of infra in front of your database that you
control and can update quickly to shift traffic
o Have used pgbouncer, haproxy, DNS record, envoy, our custom

Pg-proxy

¥ patADOG

A recipe for zero* downtime cutovers

What you need?

e Ahead of time: Logical replication
o Tables need replica identities
o Ideally, no DDL operations
o For large databases with small write volume, can start from a backup

and use pg_replication_slot_advance from when the backup
was taken

o Doesn't trigger autoanalyze!

¥ patADOG

A recipe for zero* downtime cutovers

What you need?

e Cutover: block traffic to the source
o pgbouncer pause
o ALTER ROLE NOLOGIN + kill connections

¥ batADOG

A recipe for zero* downtime cutovers

What you need?

e Cutover: Making sure data is synced
o Check flush_Isn from pg_replication_slots
o Use a “tracer” table
o Need to sync sequence values! Some dbs have 10s of thousands...

M SELECT format(E'SELECT format(E\\'SELECT pg_catalog.setval(\\\\\\'%T\SI.%2\SI\\\\\\',

%%s, %%L);\\', last_value, is_called) FROM %1\SI.%2\SI;', relnamespace::regnamespace,
relname) FROM pg_class WHERE relkind = 'S' AND relnamespace NOT IN
('information_schema'::regnamespace, 'pg_catalog'::regnamespace,

'pg_toast' ::regnamespace) ORDER BY relnamespace::regnamespace::text, relname

¥ batADOG

A recipe for zero* downtime cutovers

What you need?

e Cutover: Direct traffic to the target and see queries succeed!
o Update configuration for whatever proxy/DNS you're using
o Use percentage based rollouts to slowly ramp up read traffic
o Write traffic can be scary due to the “big bang” aspect

¥ patADOG

A recipe for zero* downtime cutovers

Day before cutover
Login Instructions
Host-pshard0 Azure Superuser
Host-pshard0 PGK
Monitoring During Write Cutover
Write Cutover
Step 0: Make sure that all operators have te...
Step 1: Verify that a recent write to the SS tr...
= Step 2: Disable all logins on the SS primary ...
Step 3: Kill connections and wait until it is v...
Step 4: Wait for logical replication to compl...
Step 5: Sync sequences for all tables using ...
Step-5a: Generate sql queries
Step-5b: Sync sequences
Step 6: Switchover in HAProxy, directly upd...
Step 7: Verification, connect to each HAPro...
Step 8: Verify via metrics/npm/psq| that no ...
Step 9: Create a PR to reflect the ConfigMa...
Cleanup: Immediately after cutover
Tear down logical replication
Release lock
Cleanup: Days after cutover
1. Tear down HAProxy
2. Drop pg user aliases
3. Decommission Azure SS
Rollback to Azure
Expected total downtime - 5 mins?
Expected risks or failures that can cause dela...
Appendix: How to create "psql-azure-superus...

Appendix: How to compare two roles

¥ batADOG

A recipe for zero* downtime cutoversPGK

188 // CloudManagedToPGKMigration migrates a given cloud managed database to PGK

189 v func (w *Worker) CloudManagedToPGKMigration(ctx workflow.Context, req xinternal.CloudManagedToPGKMigrationRequest) (xinte
190 if err := validateCloudManagedToPGKMigrationRequestParams(req); err != nil {

191 return nil, err

192 }

193 ctx = ContextWithSlackChannelOverride(workflows.DefaultContext(ctx), req.GetSlackChannel())

194 overture.SendWorkflowDetailsToSlackChannel(ctx, req.GetSlackChannel(), req)

195 humanSlackId := overture.SendWorkflowDetailsToSlack(ctx, req)

196 logger := workflow.GetLogger(ctx)

197 logger.Info(fmt.Sprintf("starting CloudManagedToPGKMigration workflow for database: %s", req.GetDatabaseldentifie
198

199 activityOptions := workflows.DefaultActivityOptions()

200 ctx = workflow.WithActivityOptions(ctx, activityOptions)

201

202 migrationPlan := "" +

203 "1. Preparation Phase [1 business day]: Creating new PGK, HAProxy for traffic shifting, setting up replic
204 "2. Application re-deployment with new HAProxy provisioned for migration \n" +

205 "3. Read cutover [1 business dayl: Shifting some portion (5%, 20%, 100% incrementally) of read traffic in
206 "(If the database does not have read replica pool, this step is skipped)\n" +

207 "4, Write cutover [~1 hour]: Shifting write traffic from Azure SS to PGK (expected downtime is ~2 minutes
208 SendSlackChannelMessage(

209 ctx, fmt.Sprintf("You can find the workflow migration plan in the following\n " “%s """, migrationPlan),
210)

211

¥ batADOG

https://github.com/DataDog/dd-source/blob/deb51d1fa0fb390fede5629fbfbfa14257b46f4a/domains/postgres/apps/internal/worker/pgk_migration.go#L189

Effect of moving to self-managed

resolver number of queries above 50ms 15d Apr 16, 12:00 am - Apr 30, 11:59 pm

d fm’*’/j\j‘\ﬂﬂhwvﬁ "ﬂ\/“‘v%"j%w“‘-—-«‘
l T

¥ patADOG

https://app.datadoghq.com/notebook/8251272/migrating-to-postgres-on-kubernetes-in-us3-prod-dog-reliability-wins

Effect of moving to self-managed

Azure Single Server instances

orpostgresql_servers.count{*}

I T I I T I T T I I
March April May June July August September October November December

¥ batADOG

Pros and cons of self-managed

Pros:

No artificial limits on disk space or replica counts
Full control over extensions

“Real” superuser

kill -15/-9 or kubectl delete pod --force

Ccons:

e Validating version updates is a lot of work - Postgres, Patroni, wal-g, etc
e We're on the hook for managing restarts/failovers
e k8sis aleaky abstraction sometimes - need host observability to understand perf problems

¥ batADOG

The platform

What are we doing with the control that we've gained?

¥ batADOG

The platform today

A custom proxy that matches Datadog’s style of internal service

e JWT authentication so that applications don't worry about database passwords
e Metrics, logging, traces all in our Datadog standard
e Dynamic configuration updates for traffic shifting

¥ patADOG

The platform today

Supporting all database sizes

Multitenant Postgres with many logical databases in the same pod
Single tenant on Kubernetes nodes shared among other pods
Single tenant on dedicated Kubernetes nodes

Sharding an application across multiple Postgres clusters

¥ patADOG

The platform in the future

Big bets we're looking at (but aren’t currently doing)

Database devex - declarative infra

“In database” sharding - Citus/pgdog/multigres/neki
Storage extensions like orioledb

Custom builds of Postgres for observability/features

¥ patADOG

Thanks!

_ Modern Role and Authentication Management Through
e %W . a Custom Proxy
2025-09-30
16:00-16:50
Forum B
Intermediate

We're hiring! For Postgres focused engineers and product managers and you'll see both on the careers site
https://careers.datadoghq.com/

¥ patADOG

